Reactions of $\left(\mathrm{H}_{2} \mathrm{AlMes} *\right)_{2}$ (Mes* $\left.=2,4,6-(t-\mathrm{Bu})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$ with $\mathrm{H}_{2} \mathrm{EAr}(\mathrm{E}=\mathrm{N}, \mathrm{P}$, or As; $\mathrm{Ar}=$ aryl): Characterization of the Ring Compounds (Mes*AlNPh) 2 and (Mes*AlEPh) ${ }_{3}$ ($\mathrm{E}=\mathrm{P}$ or As)

Rudolf J. Wehmschulte and Philip P. Power*
Contribution from the Department of Chemistry, University of California, Davis, California 95616

Received June 21, 1995. Revised Manuscript Received September 22, 1995^{\otimes}

Abstract

The reaction between sterically crowded, dimeric, arylalane $\left(\mathrm{H}_{2} \mathrm{AlMes} *\right)_{2}$ and some aryl amines, phosphines, or arsines are described. Treatment of $\left(\mathrm{H}_{2} \mathrm{AlMes} *\right)_{2}\left(\right.$ Mes $\left.*=2,4,6-(t-\mathrm{Bu})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$ with the amines $\mathrm{H}_{2} \mathrm{NPh}$ and $\mathrm{H}_{2} \mathrm{NDipp}$ $\left(\mathrm{Dipp}=2,6-(i-\mathrm{Pr})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ affords the monomeric bis(amino)alane products $\mathrm{Mes}^{*} \mathrm{Al}(\mathrm{NHPh})_{2} \cdot \mathrm{Et}_{2} \mathrm{O}\left(\mathbf{1} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ and $\mathrm{Mes}^{*} \mathrm{Al}-$ (NHDipp) $)_{2}(\mathbf{2})$ which feature three-coordinate aluminum and nitrogen centers and short $\mathrm{Al}-\mathrm{N}$ bonds. Heating of a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{AlMes} *$ and aniline under carefully controlled conditions affords the dimer (Mes*AlNPh) $)_{2}, \mathbf{3}$. Reaction of $\left(\mathrm{Mes}^{*} \mathrm{AlH}_{2}\right)_{2}$ with $\mathrm{H}_{2} \mathrm{PPh}$ or $\mathrm{H}_{2} \mathrm{AsPh}$ at $c a .160^{\circ} \mathrm{C}$ gives the trimeric, six-membered-ring compounds $\left(\mathrm{Mes}^{*} \mathrm{AlPPh}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(4 \cdot \mathrm{Et}_{2} \mathrm{O}\right)\right.$ and $\left(\mathrm{Mes}^{*} \mathrm{AlAsPh}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(5 \cdot \mathrm{Et}_{2} \mathrm{O}\right)\right.$ which are formal valence analogues of borazine. The structure of $\mathbf{3}$ features a planar $\mathrm{Al}_{2} \mathrm{~N}_{2}$ core, which also extends to the ipso carbons of the aryl rings; the $\mathrm{Al}-\mathrm{N}$ distance is $1.824(2) \AA$. The structures of $\mathbf{4}$ and $\mathbf{5}$ have six-membered rings of alternating aluminum and phosphorus or arsenic atoms arranged in a nonplanar boat conformation. Little or no delocalization of the phosphorus or arsenic lone pairs is evident since the average $\mathrm{Al}-\mathrm{P}$ and $\mathrm{Al}-\mathrm{As}$ distances are consistent with single bond lengths. Moreover, pyramidal coordination is observed at all the pnictide centers. The structures of 5 and $\mathbf{4}$ represent respectively the first and second examples of bonding between three-coordinate aluminum and arsenic or phosphorus, whereas $\mathbf{3}$ represents a unique instance of an $\mathrm{Al}_{2} \mathrm{~N}_{2}$ ring with organic substituents. The compounds were characterized by ${ }^{1} \mathrm{H}$, ${ }^{13} \mathbf{C}$, and ${ }^{31} \mathrm{P}(\mathbf{4}$, only) NMR spectroscopy and by X-ray crystallography in the case of $\mathbf{1}, \mathbf{3}, \mathbf{4}$, and $\mathbf{5}$. Crystal data with $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54178 \AA$) radiation at $130 \mathrm{~K}: 1, a=10.255(3) \AA, b=16.733(5) \AA$, $c=19.267(8) \AA, \beta=$ 95.09(3) $)^{\circ}, V=3293(2) \AA^{3}, Z=4$, space group $P 2_{1} / c, 3070(I>2 \sigma(I))$ data, $R=0.061 ; \mathbf{3}, a=8.750(1) \AA, b=$ $9.326(2) \AA, c=14.025(3) \AA, \alpha=101.04(2)^{\circ}, \beta=92.90(1)^{\circ}, \gamma=113.11(1)^{\circ}, V=1088.7(4) \AA^{3}, Z=1$, space group $P \overline{1}, 2629(I>2 \sigma(I))$ data, $R=0.053 ; 4, a=9.383(5) \AA, b=17.719(7) \AA, c=23.603(14) \AA, \alpha=80.86(4)^{\circ}$, $\beta=82.50(5)^{\circ}, \gamma=75.61^{\circ}(4), V=3736(3) \AA^{3}, Z=2$, space group $P \overline{1}, 5626(I>2 \sigma(I))$ data, $R=0.084 ; 5, a=$ 9.404(7) $\AA, b=17.79(2) \AA, c=23.643(10) \AA, \alpha=81.01(6)^{\circ}, \beta=83.04(5)^{\circ}, \gamma=75.68(7)^{\circ}, V=3771(5) \AA^{3}, Z$ $=2$, space group $P \overline{1}, 6363(I>2 \sigma(I))$ data, $R=0.063$.

Introduction

The recent synthesis of well-characterized, sterically hindered, uncomplexed, primary alanes or gallanes such as $\left(\mathrm{Mes}^{*} \mathrm{MH}_{2}\right)_{n}$ $\left(\mathrm{M}=\mathrm{Al}^{1}(n=2)\right.$ or $\left.\mathrm{Ga},{ }^{2}(n=1)\right)$ and related species has provided a new, potentially important, source of starting materials from which new examples of main group III-V compounds (including main group III -V ring species) may be derived. Currently, inorganic main group III-V rings that are analogous to benzene are limited to relatively few types of molecules. ${ }^{3}$ The best known example is borazine which was first reported in 1926. ${ }^{4}$ Other main group III-V analogues were not reported until recently and the currently known range includes only the $\mathrm{B}-\mathrm{P}$ (e.g. $\left.(\mathrm{MesBPPh})_{3}\right),{ }^{5} \mathrm{Al}-\mathrm{N}$ (the unique compound $\left.\left\{\operatorname{MeAlN}\left(2,6-(i-\operatorname{Pr})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right\}_{3}{ }^{6}\right)$, and $\mathrm{Ga}-\mathrm{P}$ (the unique compound $\left\{2,4,6-\mathrm{Ph}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{GaPC}_{6} \mathrm{H}_{11}\right\}_{3}{ }^{7}$) ring systems. Both the

[^0]isoelectronic $\mathrm{B}-\mathrm{P}$ and $\mathrm{Al}-\mathrm{N}$ rings display planar geometries that extend to the carbon atoms bound directly to the ring. Recent calculations ${ }^{8,9}$ on the hypothetical molecules (HBPH) 3_{3} and $(\mathrm{HAlNH})_{3}$ and related species have indicated that in the ground state, at least, only the $\mathrm{B}-\mathrm{P}$ system (which is not quite planar but has flattened pyramidal phosphorus coordination) has a significant resonance energy, which is slightly greater than that found in borazine. ${ }^{8}$ In contrast, the six-membered $\mathrm{Ga}-\mathrm{P}$ ring in $\left\{2,4,6-\mathrm{Ph}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{GaPC}_{6} \mathrm{H}_{11}\right\}_{3}{ }^{7}$ is not planar, instead it assumes a twist-boat geometry with normal single $\mathrm{Ga}-\mathrm{P}$ bond lengths and pyramidal coordination at the phosphorus centers. In addition to the six-membered borazine analogues there are the related four-membered gallium-phosphorus ring species (tBuGaPMes*) $)_{2}{ }^{10}(\mathrm{Ga}-\mathrm{P}=2.274(4) \AA)$ and the compound Cp* $\left\{\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{~N}\right\} \mathrm{AlN}\left(\mu-\mathrm{AlCp}^{*}\right)\left(\mu-\mathrm{Al}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}\right) \mathrm{NAlCp}_{2}{ }^{11}$ $\left(\mathrm{Cp}^{*}=\eta^{1}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ that features a central $\mathrm{Al}_{2} \mathrm{~N}_{2}$ ring with an

[^1]average $\mathrm{Al}-\mathrm{N}$ distance of $1.811(7) \AA$. There is no evidence for significant delocalization in these "antiaromatic' species.

The synthesis of further examples of unsaturated main group $\mathrm{III}-\mathrm{V}$ ring systems has been slowed by limitations of previously known routes, which, to date, have proved inapplicable to other rings. From a wider perspective, there are relatively few compounds of any kind that have the low-coordination numbers that are expected in the title novel ring systems. For example, there are no well-characterized molecular compounds that feature bonding between three-coordinate aluminum and arsenic. Furthermore, there is only a single example of a structurally characterized compound with bonding between three-coordinate aluminum and phosphorus ${ }^{12}$ and three-coordinate aluminumnitrogen species are limited to a handful of compounds. ${ }^{13}$

In this paper the results of the interaction of the recently synthesized primary arylalane (Mes* $\left.\mathrm{AlH}_{2}\right)_{2}$ with the primary pnictide derivatives $\mathrm{H}_{2} \mathrm{NPh}, \mathrm{H}_{2} \mathrm{NDipp}\left(\mathrm{Dipp}=2,6-(i-\mathrm{Pr})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$, $\mathrm{H}_{2} \mathrm{PPh}$, and $\mathrm{H}_{2} \mathrm{AsPh}$ are described. The most important result of these investigations is that the new ring compounds (Mes*AlNPh) $)_{2}$, (Mes*AlPPh) ${ }_{3}$, and (Mes*AlAsPh) ${ }_{3}$ (Mes* $=$ $\left.2,4,6-(t-\mathrm{Bu})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$ can be relatively easily isolated and characterized.

Experimental Section

General Procedures. All experiments were performed under a nitrogen atmosphere either by using modified Schlenk techniques or in a Vacuum Atmospheres HE43-2 drybox. Solvents were freshly distilled from a sodium-potassium alloy and degassed twice prior to use. ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$, and ${ }^{31} \mathrm{P}$ NMR spectra were recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{C}_{7} \mathrm{D}_{8}$ solutions by using a General Electric QE-300 spectrometer. The compounds (Mes*AlH $)_{2}$) ${ }^{1} \mathrm{H}_{2} \mathrm{PPh},{ }^{14}$ and $\mathrm{H}_{2} \mathrm{AsPh}^{15}$ were synthesized by literature methods. The amines $\mathrm{H}_{2} \mathrm{NPh}$ and $\mathrm{H}_{2} \mathrm{NDipp}$ were obtained from commercial suppliers and dried by standard procedures.

Synthesis. (a) Mes*Al(NHPh) $)_{2}$ (1). A solution of $0.69 \mathrm{~g}(1.25$ $\mathrm{mmol})$ of $\left(\text { Mes* } \mathrm{AlH}_{2}\right)_{2}$ in toluene $(40 \mathrm{~mL})$ was treated with $\mathrm{H}_{2} \mathrm{NPh}$ $(0.23 \mathrm{~mL}, 2.5 \mathrm{mmol})$ at room temperature. The H_{2} evolution commenced immediately and ceased after $c a .15 \mathrm{~min}$. The mixture was stirred for another 45 min , filtered, concentrated to $c a .5 \mathrm{~mL}$, and cooled in a $-20^{\circ} \mathrm{C}$ freezer for 24 h to yield $\mathbf{1}$ as a colorless solid. Recrystallization from ca. 15 mL of $\mathrm{Et}_{2} \mathrm{O}$ in a $-20^{\circ} \mathrm{C}$ freezer for 1 week results in colorless, X-ray quality plates of Mes* $\mathrm{Al}(\mathrm{NHPh})_{2} \cdot-$ $\mathrm{Et}_{2} \mathrm{O}\left(1 \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ which lose solvent relatively easy. Yield: $0.11 \mathrm{~g}, 17 \%$. Mp : softens at $85^{\circ} \mathrm{C}$, melts at $180-184^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): 7.57 (s, $\left.m-\mathrm{H}\left(\mathrm{Mes}^{*}\right), 2 \mathrm{H}\right), 6.94\left(\mathrm{t}, 4 \mathrm{H}, J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right.$), 6.64 (partially obscured by signal at 6.61$), 6.61\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 3.19(\mathrm{~s}, \mathrm{NH}, 2 \mathrm{H}), 1.55$ (s,o-CH3, $18 \mathrm{H}), 1.28\left(\mathrm{~s}, p-\mathrm{CH}_{3}, 9 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 158.6$ (o-C (Mes*)), 151.9 (p-C (Mes*)), 150.1 (i-C (Ph)), 129.8 (m-C (Ph)), 122.0 (m-C (Mes*)), 117.4 ($p-\mathrm{C}(\mathrm{Ph})$), 117.0 ($o-\mathrm{C}(\mathrm{Ph})$), 37.9 ($o-C$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.9\left(p-C\left(\mathrm{CH}_{3}\right)_{3}\right), 32.3\left(o-\mathrm{CH}_{3}\right), 31.4\left(p-\mathrm{CH}_{3}\right)$. IR: $v_{\mathrm{NH}}=$ $3361 \mathrm{~cm}^{-1}$.
(b) Mes*Al(NHDipp) $\mathbf{2}_{2}$ (2). $\mathrm{H}_{2} \mathrm{NDipp}(0.18 \mathrm{~mL}, 0.91 \mathrm{mmol}, 0.16$ g) was added via syringe to finely ground $\left(\mathrm{Mes}^{*} \mathrm{AlH}_{2}\right)_{2}(0.25 \mathrm{~g}, 0.46$ mmol) at room temperature. After a few minutes a slight gas evolution was observed, whereupon the mixture became viscous. The flask was placed in a $100^{\circ} \mathrm{C}$ oil bath to give a more intense gas evolution and a clear liquid. After 10 min the mixture had become viscous and gas evolution had ceased. After being cooled to room temperature, the glass-like solid was dissolved in n-hexane (20 mL), filtered, concentrated to ca. 3 mL , and cooled in a $-20^{\circ} \mathrm{C}$ freezer for 1 week to yield 0.26 g of a colorless microcrystalline solid which still contains some Mes*H. Recrystallization from n-hexane (5 mL) at $c a .5^{\circ} \mathrm{C}$ for 1 week results in large colorless plates of Mes*Al(NHDipp) $)_{2}$. Yield: 0.08 g (28%). Mp: softens at $80^{\circ} \mathrm{C}$, melts at $95-104^{\circ} \mathrm{C}$. Anal. Calcd for

[^2]$\mathrm{C}_{42} \mathrm{H}_{65} \mathrm{~N}_{2} \mathrm{Al}: \mathrm{C}, 80.71 ; \mathrm{H}, 10.48 ; \mathrm{N}, 4.48$. Found: C, 80.30; H, 10.63; H, 4.69. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): 7.48 (s, m - H (Mes*), 2H), 7.08 (d, m - H (Dipp), 4H, ${ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}$), 6.97 (t, p-H (Dipp), 2H), 3.29 (sept, H-C $\left.\left(\mathrm{CH}_{3}\right)_{2}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right), 3.00(\mathrm{~s}, \mathrm{NH}, 2 \mathrm{H}), 1.59\left(\mathrm{~s}, o-\mathrm{CH}_{3}(\mathrm{Mes} *)\right.$, 18 H), $1.30\left(\mathrm{~s}, p-\mathrm{CH}_{3}\right.$ (Mes*), 9H), 1.08 (d, $o-\mathrm{CH}_{3}$ (Dipp), 24 H). ${ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $158.5\left(o-\mathrm{C}\left(\right.\right.$ Mes $\left.\left.^{*}\right)\right)$, $151.1(p$-C(Mes*)), 143.4 (i-C (Dipp)), 140.6 (o-C (Dipp)), 123.5 (m-C (Dipp)), 121.9, 121.5 (m-C (Mes*), p-C (Dipp)), $37.7\left(o-C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.8\left(p-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.5$ (oCH_{3} (Mes*)), 31.3 ($p-\mathrm{CH}_{3}$ (Mes*)), 28.8 (o-CH), 23.5 ($o-\mathrm{CH}_{3}$ (Dipp)). IR: $v_{\mathrm{NH}}=3348,3363 \mathrm{~cm}^{-1}$.
(c) (Mes*AINPh $\left.)_{2}(\mathbf{3}) . \mathrm{H}_{2} \mathrm{NPh}(0.17 \mathrm{~mL}, 1.9 \mathrm{mmol}), 0.177 \mathrm{~g}\right)$ was added via syringe to a solution of $0.57 \mathrm{~g}(1.04 \mathrm{mmol})$ of $\left(\mathrm{Mes}^{*} \mathrm{AlH}_{2}\right)_{2}$ in 20 mL of ethylbenzene at $0^{\circ} \mathrm{C}$. Gas evolution $\left(\mathrm{H}_{2}\right)$ commenced immediately and ceased after ca. 5 min . The colorless solution was warmed to room temperature and stirred for 2 h . The flask was then placed in a preheated $\left(125^{\circ} \mathrm{C}\right)$ oil bath, without stirring. After a few minutes a smooth gas evolution occurred which was followed by the gradual formation of colorless needle-shaped crystals. The gas evolution appeared to cease after about 1 h . The mixture was maintained at $125^{\circ} \mathrm{C}$ for an additional hour and slowly cooled to room temperature. The resultant crystals which reached lengths of up to 2 mm were of X-ray quality. Isolation of the crystals, followed by washing twice with 20 mL of n-pentane, resulted in 0.27 g of $\mathbf{3}$. Yield: 39.1%. Mp: $>300^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{68} \mathrm{Al}_{2} \mathrm{~N}_{2}$: C, $79.30 ; \mathrm{H}, 9.43 ; \mathrm{N}, 3.86$. Found: C, 79.15; H, 9.26; N, 3.78. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{7} \mathrm{D}_{8}, 110^{\circ} \mathrm{C}$): 7.58 (s, $m-\mathrm{H}, 4 \mathrm{H}), 6.76(\mathrm{t}, m-\mathrm{H}(\mathrm{Ph}), 4 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.54$ ("t" $o-\mathrm{H}(\mathrm{Ph}), 4 \mathrm{H})$, $\Delta v=6.0 \mathrm{~Hz}), 6.42(\mathrm{t}, p-\mathrm{H}(\mathrm{Ph}), 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.71\left(\mathrm{~s}, o-\mathrm{CH}_{3}, 36 \mathrm{H}\right)$, 1.33 (s, $p-\mathrm{CH}_{3}, 18 \mathrm{H}$).
(d) (Mes*AIPPh) $\cdot \mathbf{O E E t}_{2}\left(\mathbf{4} \cdot \mathbf{E t}_{2} \mathbf{O}\right) . \mathrm{H}_{2} \mathrm{PPh}(0.40 \mathrm{~mL}, 0.40 \mathrm{~g}, 3.6$ $\mathrm{mmol})$ was added via syringe to $0.50 \mathrm{~g}(0.9 \mathrm{mmol})$ of finely ground (Mes* $\left.\mathrm{AlH}_{2}\right)_{2}$ at room temperature. The almost clear, slightly viscous, mixture was then placed in a preheated oil bath at $160^{\circ} \mathrm{C}$. Intense frothing commenced after $c a .1-2 \mathrm{~min}$ and continued for $c a .3 \mathrm{~min}$ after which time the mixture solidified. After cooling to room temperature, and removal of volatile fractions under reduced pressure $(3 \mathrm{~h})$, the pale yellow solid was dissolved in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, filtered, and cooled to $-20{ }^{\circ} \mathrm{C}$ overnight to afford colorless X-ray quality crystals, which easily lose solvent of crystallization. Yield: 0.38 g (52.1%). Mp: softens at $193{ }^{\circ} \mathrm{C}$, melts at $241-2{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.53(\mathrm{~s}, m-\mathrm{H}, 6 \mathrm{H}), 7.14$ (s, broad, $\left.o-\mathrm{H}, \mathrm{PhP}, 6 \mathrm{H}\right), 6.61(\mathrm{~m}$, $p-\mathrm{H}, \mathrm{PhP}, 3 \mathrm{H}), 6.56(\mathrm{~m}, m-\mathrm{H}, \mathrm{PhP}, 6 \mathrm{H}), 3.25\left(\mathrm{q}, \mathrm{OCH}_{2}\right.$, trace, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=$ $6.9 \mathrm{~Hz}), 1.79\left(\mathrm{~s}, o-\mathrm{CH}_{3}, 54 \mathrm{H}\right), 1.32\left(\mathrm{~s}, p-\mathrm{CH}_{3}, 27 \mathrm{H}\right), 1.10\left(\mathrm{t}, \mathrm{CH}_{3}\right.$, trace $)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 6{ }^{\circ} \mathrm{C}\right): 158.5(o-\mathrm{C}), 151.4$ (p-C), 134.9 (o-C, PhP), 128.2 (m-C, PhP), 124.9 ($p-\mathrm{C}, \mathrm{PhP}$), 122.3 ($m-\mathrm{C}$), 39.0 ($o-$ $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right), 33.9\left(o-\mathrm{CH}_{3}\right), 31.4\left(p-\mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):-144.2(\mathrm{~s})$.
(e) (Mes*AlAsPh $)_{3}(\mathbf{5}) . \mathrm{PhAsH}_{2}(7.6 \mathrm{mmol}, 0.86 \mathrm{~mL}, 1.17 \mathrm{~g})$ was added via syringe to finely ground $\left(\mathrm{Mes}^{*} \mathrm{AlH}_{2}\right)_{2}(1.9 \mathrm{mmol}, 1.04 \mathrm{~g})$ at room temperature. The Schlenk tube containing the resultant, slightly viscous, slurry was then placed in a preheated oil bath at $140^{\circ} \mathrm{C}$. After $c a .2$ min the slurry became a clear liquid. The temperature was slowly raised and at $145^{\circ} \mathrm{C}$ slight gas evolution was observed. This intensified when the temperature was raised to $c a .155-160^{\circ} \mathrm{C}$. After 2 min at this temperature the frothing liquid became yellow and then solidified. Gas evolution essentially ceased, indicating that the reaction process was essentially complete. After being cooled to room temperature the solid was placed under reduced pressure for $c a 1 \mathrm{~h}$, then for an additional hour at $100^{\circ} \mathrm{C}$. The yellow solid was dissolved in toluene $(25 \mathrm{~mL})$, and the small amount of insoluble material was filtered off. The pale yellow filtrate was concentrated to $c a .15-20 \mathrm{~mL}$ and cooled in a $-20^{\circ} \mathrm{C}$ freezer overnight to yield 0.58 g of fine colorless needles which lose co-crystallized solvent (PhMe) upon isolation. A second crop of $c a .0 .1 \mathrm{~g}$ was isolated from the concentrated mother liquor upon further cooling for 3 days at $-30^{\circ} \mathrm{C}$. X-ray quality crystals of $5 \cdot \mathrm{Et}_{2} \mathrm{O}$ were grown from ether. Yield: $0.68 \mathrm{~g}(42 \%)$. Mp: turns orange at $208^{\circ} \mathrm{C}$, melts with a color change to red at $212-216^{\circ} \mathrm{C}$. The compound loses ether of crystallization when isolated. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right): 7.53(\mathrm{~s}, m-\mathrm{H}, 6 \mathrm{H}), 7.15(\mathrm{~d}, 6 \mathrm{H}, \mathrm{Ph}, \mathrm{As}, J=7.5 \mathrm{~Hz})$, 6.72 (t, 3H, Ph, As, $J=7.2 \mathrm{~Hz}$), $6.61(\mathrm{t}, 6 \mathrm{H}, \mathrm{Ph}, \mathrm{As}, J=7.2 \mathrm{~Hz}$), 3.33 $\left(\mathrm{q}, 2.5 \mathrm{H}, \mathrm{OCH}_{2}, J=6.9 \mathrm{~Hz}\right), 1.78\left(\mathrm{~s}, o-\mathrm{CH}_{3}, 54 \mathrm{H}\right), 1.36\left(\mathrm{~s}, p-\mathrm{CH}_{3}\right.$, $27 \mathrm{H}), 1.11\left(\mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2}, 3.7 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$, $\left(60^{\circ} \mathrm{C}\right): 158.5(o-\mathrm{C})$, 151.3 (p-C), 137.9 (i-C, Mes* or Ph, As), 136.2 (o - or m-C, Ph, As), 132.3 (i-C, Mes* or Ph, As), 128.5 (o-or $m-\mathrm{C}, \mathrm{Ph}, \mathrm{As}$), 125.3 ($p-\mathrm{C}$,

Table 1. Crystallographic Data for $\mathbf{1} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathbf{3}, 4 \cdot \mathrm{Et}_{2} \mathrm{O}$, and $\mathbf{5} \cdot \mathrm{Et}_{2} \mathrm{O}^{a}$

compound	$1 \cdot \mathrm{Et}_{2} \mathrm{O}$	3	$4 \cdot \mathrm{Et}_{2} \mathrm{O}$	$5 \cdot \mathrm{Et}_{2} \mathrm{O}$
formula	$\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{AlN}_{2} \mathrm{O}$	$\mathrm{C}_{48} \mathrm{H}_{68} \mathrm{Al}_{2} \mathrm{~N}_{2}$	$\mathrm{C}_{76} \mathrm{H}_{112} \mathrm{Al}_{3} \mathrm{OP}_{3}$	$\mathrm{C}_{76} \mathrm{H}_{112} \mathrm{Al}_{3} \mathrm{As}_{3} \mathrm{O}$
fw	530.7	727.0	1215.51	1347.36
crystal description	colorless block	colorless plate	colorless needle	colorless needle
crystal dimens, mm	$0.28 \times 0.30 \times 0.42$	$0.10 \times 0.48 \times 0.67$	$0.15 \times 0.18 \times 0.70$	$0.12 \times 0.20 \times 1.00$
a, Å	10.255(3)	8.750 (1)	$9.383(5)$	9.404(7)
b, \AA	16.733(5)	9.326(2)	17.719(7)	17.79(2)
c, \AA	19.267(8)	14.025(3)	23.603(14)	23.643(10)
α, deg		101.04(2)	80.86(4)	81.01(6)
β deg	95.09(3)	92.90(1)	82.50(5)	83.04(5)
$\gamma, \operatorname{deg}$		103.11(1)	75.61(4)	75.68(7)
V, \AA^{3}	3293(2)	1088.7(4)	3736(3)	3771(5)
Z	4	1	2	2
space group	$P 2_{1} / c$	$P \overline{1}$	$P \overline{1}$	$P \overline{1}$
d (calc), $\mathrm{g} / \mathrm{cm}^{3}$	1.070	1.109	1.081	1.186
linear abs coeff, mm^{-1}	0.724	0.840	1.366	2.214
2θ range, deg	0-114	0-114	0-114	0-110
no. of obsd reflens	$3070(I>2 \sigma(I))$	$2629(I>2 \sigma(I))$	$5626(I>2 \sigma(I))$	$6363(I>2 \sigma(I))$
no. of variables	343	244	744	779
$R_{1}, R_{\text {w }}$	0.061, 0.070	0.053, $0.144^{\text {b }}$	0.084, 0.185 ${ }^{\text {b }}$	$0.063,0.134^{\text {b }}$

${ }^{a}$ The intensity data sets were collected at 130 K using a Syntex $\mathrm{P} 2_{1}$ diffractometer with $\mathrm{Cu} \mathrm{K} \alpha\left(\lambda=1.54178 \AA\right.$) radiation. ${ }^{b} R_{\mathrm{w}}$ based on $F_{0}{ }^{2}$ $-F_{\mathrm{c}}{ }^{2}$.
$\mathrm{Ph}, \mathrm{As}), 122.0(m-\mathrm{C}), 39.1\left(o-C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.9\left(p-C\left(\mathrm{CH}_{3}\right)_{3}\right), 33.9$ ($o-$ $\left.\mathrm{CH}_{3}\right)$, $31.4\left(p-\mathrm{CH}_{3}\right)$.

X-ray Data Collection, the Solution and Refinement of the Structures

Crystals of $\mathbf{1}$ and 3-5 were coated with a layer of hydrocarbon oil upon removal from the Schlenk tube. Suitable crystals were selected, attached to a glass fiber by silicon grease, and immediately placed in the low-temperature N_{2} stream. ${ }^{16}$ X-ray data were collected with a Syntex $\mathrm{P} 2_{1}$ diffractometer equipped with a graphite monochromator and a locally modified LT apparatus. Calculations were carried out in a MicroVax 3200 computer using the SHELXTL-Plus program system (1) and on an IBM compatible 486 PC using the SHELXTL-94 program system for 3, 4, and 5. Neutral atom scattering factors and the correction for anomalous dispersion were those supplied by SHELXTLPlus or SHELXTL-94. Some details of the data collections and the refinements are provided in Table 1. Further details are in the supporting information. Structures of $\mathbf{1}, \mathbf{3}$, and $\mathbf{5}$ were solved by direct methods. The structure of $\mathbf{4}$ was solved by using the data set of $\mathbf{5}$ without the hydrogen atoms. The compounds were refined by fullmatrix least-squares procedures. Hydrogen atoms were included by the use of a riding model with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and fixed isotropic thermal parameters. Important atom coordinates and bond distances and angles are given in Tables 2 and 3.

Results

Synthesis. A major objective of the work described here was the synthesis of the new ring compounds involving aluminum. It was felt that the use of $\left(\mathrm{Mes}^{*} \mathrm{AlH}_{2}\right)_{2}{ }^{1}$ would prove a suitable starting material owing to the fact that, in reactions with primary amines, phosphines, or arsines, hydrogen would be the sole byproduct of the reaction thereby simplifying purification as depicted in eq 1 .

$$
\begin{gathered}
\left(\mathrm{Mes}^{*} \mathrm{AlH}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{EPh} \rightarrow(\mathrm{Mes} * \mathrm{AlEPh})_{n}+4 \mathrm{H}_{2} \\
(\mathrm{E}=\mathrm{N}, \mathrm{P}, \text { or As })
\end{gathered}
$$

For $\mathrm{E}=\mathrm{P}$ or As the reactions between $\left(\mathrm{Mes}^{*} \mathrm{AlH}_{2}\right)_{2}$ and $\mathrm{H}_{2}-$ PPh or $\mathrm{H}_{2} \mathrm{AsPh}$ were relatively straightforward and $\mathbf{4}$ and $\mathbf{5}$ were readily obtained. The reactions proceeded under milder conditions (ca. $125{ }^{\circ} \mathrm{C}$ for 3, cf. $170{ }^{\circ} \mathrm{C}$ for (MeAlNDipp) 3^{6}) than

[^3]Table 2. Atom Coordinates $\left(\times 10^{4}\right)$ for Important Atoms in $\mathbf{1} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathbf{3}, \mathbf{4} \cdot \mathrm{Et}_{2} \mathrm{O}$, and $\mathbf{5} \cdot \mathrm{Et}_{2} \mathrm{O}$

	x	y	z
$1 \cdot \mathrm{Et}_{2} \mathrm{O}$			
$\mathrm{Al}(1)$	1284(1)	1702(1)	6644(1)
$\mathrm{O}(1)$	4372(3)	569(2)	7456(2)
N(1)	1474(3)	1250(2)	7491(2)
N(2)	2713(3)	1471(2)	6209(2)
C(1)	-259(4)	2329(2)	6297(2)
C(19)	829(4)	1352(3)	8090(2)
C(25)	2968(4)	1490(2)	5510(2)
3			
$\mathrm{Al}(1)$	4594(1)	9669(1)	5828(1)
N(1)	3855(2)	8944(2)	4546(1)
C(1)	3973(3)	9056(3)	7043(2)
C(2)	2912(3)	9719(3)	7596(2)
C(6)	4510(3)	7902(3)	7389(2)
C(19)	2602(3)	7803(3)	4056(2)
C(20)	1379(3)	7096(3)	4547(2)
C(24)	2480(3)	7297(3)	3038(2)
$4 \cdot \mathrm{Et}_{2} \mathrm{O}$			
$\mathrm{P}(1)$	4991(2)	1559(1)	1676(1)
$\mathrm{Al}(1)$	4831(2)	1265(1)	2675(1)
$\mathrm{P}(2)$	7536(2)	2906(1)	1922(1)
$\mathrm{Al}(2)$	6900(2)	2174(1)	1299(1)
$\mathrm{P}(3)$	5577(2)	2066(1)	3211(1)
$\mathrm{Al}(3)$	5617(2)	3255(1)	2637(1)
C(1)	4037(8)	409(4)	3166(3)
C(19)	5203(7)	640(4)	1370(3)
C(25)	7874(8)	2161(4)	498(3)
C(43)	7973(8)	3782(4)	1474(3)
C(49)	4506(9)	4267(4)	2900(3)
C(67)	4183(8)	2159(4)	3838(3)
(1) $5 \cdot \mathrm{Et}_{2} \mathrm{O}$			
As(1)	4832(1)	1613(1)	1641(1)
$\mathrm{Al}(1)$	4814(3)	1272(1)	2678(1)
As(2)	7722(1)	2887(1)	1945(1)
$\mathrm{Al}(2)$	6922(3)	2183(1)	1285(1)
As(3)	5714(1)	2038(1)	3261(1)
$\mathrm{Al}(3)$	5687(3)	3271(1)	2657(1)
C(1)	4036(8)	420(4)	3166(3)
C(19)	5138(8)	609(4)	1350(3)
$\mathrm{C}(25)$	7888(8)	2157(4)	491(3)
C(43)	8095(9)	3841(4)	1465(3)
C(49)	4555(8)	4278(4)	2916(3)
C(67)	4131(8)	2174(4)	3883(3)

similar eliminations involving alkanes, which makes the possibility of side reactions less likely (vide infra for details). No attempts were made to isolate intermediates in the case of the

Table 3. Important Bond Distances (\AA) and Angles (deg) in $\mathbf{1} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathbf{3}, \mathbf{4} \cdot \mathrm{Et}_{2} \mathrm{O}$, and $\mathbf{5} \cdot \mathrm{Et}_{2} \mathrm{O}$

1- $\mathrm{Et}_{2} \mathrm{O}$			
$\mathrm{Al}(1)-\mathrm{N}(1)$	1.795(3)	$\mathrm{O}(1)-\mathrm{C}(33)$	1.415(6)
$\mathrm{Al}(1)-\mathrm{N}(2)$	1.794(4)	$\mathrm{N}(1)-\mathrm{C}(19)$	1.391(5)
$\mathrm{Al}(1)-\mathrm{C}(1)$	1.966 (4)	$\mathrm{N}(2)-\mathrm{C}(25)$	1.394(5)
$\mathrm{O}(1)-\mathrm{C}(31)$	$1.432(6)$		
$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{N}(2)$	107.9(2)	$\mathrm{C}(31)-\mathrm{O}(1)-\mathrm{C}(33)$	113.2(3)
$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{C}(1)$	123.7(2)	$\mathrm{Al}(1)-\mathrm{N}(1)-\mathrm{C}(19)$	133.0(3)
$\mathrm{N}(2)-\mathrm{Al}(1)-\mathrm{C}(1)$	128.5(2)	$\mathrm{Al}(1)-\mathrm{N}(2)-\mathrm{C}(25)$	132.7(3)
3			
$\mathrm{Al}(1)-\mathrm{N}(1)$	1.824(2)	$\mathrm{Al}(1)-\mathrm{Al}(1 \mathrm{a})$	2.607(1)
$\mathrm{Al}(1)-\mathrm{N}(1 \mathrm{a})$	1.824(2)	$\mathrm{N}(1)-\mathrm{C}(19)$	1.386 (3)
$\mathrm{Al}(1)-\mathrm{C}(1)$	1.962(2)	$\mathrm{N}(1)-\mathrm{Al}(1 \mathrm{a})$	1.824(2)
$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{N}(1 \mathrm{a})$	88.75(9)	$\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{Al}(1)$	134.2(2)
$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{C}(1)$	133.5(1)	$\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{Al}(1 \mathrm{a})$	134.6(2)
$\mathrm{N}(1 \mathrm{a})-\mathrm{Al}(1)-\mathrm{C}(1)$	137.7(1)	$\mathrm{Al}(1)-\mathrm{N}(1)-\mathrm{Al}(1 \mathrm{a})$	91.25(9)
$\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{Al}(1 \mathrm{a})$	176.91(8)		
$4 \cdot \mathrm{Et}_{2} \mathrm{O}$			
$\mathrm{P}(1)-\mathrm{C}(19)$	1.840(7)	$\mathrm{P}(2)-\mathrm{Al}(2)$	2.328(3)
$\mathrm{P}(1)-\mathrm{Al}(1)$	2.325(3)	$\mathrm{P}(2)-\mathrm{Al}(3)$	2.336(3)
$\mathrm{P}(1)-\mathrm{Al}(2)$	2.332(3)	$\mathrm{Al}(2)-\mathrm{C}(25)$	1.990(7)
$\mathrm{Al}(1)-\mathrm{C}(1)$	1.994(6)	$\mathrm{P}(3)-\mathrm{C}(67)$	1.842(7)
$\mathrm{Al}(1)-\mathrm{P}(3)$	2.324(3)	$\mathrm{P}(3)-\mathrm{Al}(3)$	2.323(3)
$\mathrm{P}(2)-\mathrm{C}(43)$	1.838(7)	$\mathrm{Al}(3)-\mathrm{C}(49)$	1.985(8)
$\mathrm{C}(19)-\mathrm{P}(1)-\mathrm{Al}(1)$	108.1(2)	$\mathrm{C}(25)-\mathrm{Al}(2)-\mathrm{P}(2)$	120.3(2)
$\mathrm{C}(19)-\mathrm{P}(1)-\mathrm{Al}(2)$	110.9(2)	$\mathrm{C}(25)-\mathrm{Al}(2)-\mathrm{P}(1)$	125.0(2)
$\mathrm{Al}(1)-\mathrm{P}(1)-\mathrm{Al}(2)$	113.4(1)	$\mathrm{P}(2)-\mathrm{Al}(2)-\mathrm{P}(1)$	114.6(1)
$\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{P}(3)$	112.8(2)	$\mathrm{C}(67)-\mathrm{P}(3)-\mathrm{Al}(3)$	113.3(2)
$\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{P}(1)$	128.2(2)	$\mathrm{C}(67)-\mathrm{P}(3)-\mathrm{Al}(1)$	104.1(2)
$\mathrm{P}(3)-\mathrm{Al}(1)-\mathrm{P}(1)$	118.9(1)	$\mathrm{Al}(3)-\mathrm{P}(3)-\mathrm{Al}(1)$	108.1(1)
$\mathrm{C}(43)-\mathrm{P}(2)-\mathrm{Al}(2)$	106.4(2)	$\mathrm{C}(49)-\mathrm{Al}(3)-\mathrm{P}(3)$	121.0(2)
$\mathrm{C}(43)-\mathrm{P}(2)-\mathrm{Al}(3)$	111.0(3)	$\mathrm{C}(49)-\mathrm{Al}(3)-\mathrm{P}(2)$	134.3(2)
$\mathrm{Al}(2)-\mathrm{P}(2)-\mathrm{Al}(3)$	111.6(1)	$\mathrm{P}(3)-\mathrm{Al}(3)-\mathrm{P}(2)$	103.1(1)
$5 \cdot \mathrm{Et}_{2} \mathrm{O}$			
As(1)-C(19)	1.957(8)	$\mathrm{As}(2)-\mathrm{Al}(3)$	2.428(3)
$\mathrm{As}(1)-\mathrm{Al}(1)$	2.432(3)	$\mathrm{As}(2)-\mathrm{Al}(2)$	2.435(3)
$\mathrm{As}(1)-\mathrm{Al}(2)$	2.433(3)	$\mathrm{Al}(2)-\mathrm{C}(25)$	1.985(7)
Al(1)-C(1)	1.990(7)	As(3)-C(67)	1.959(7)
$\mathrm{Al}(1)-\mathrm{As}(3)$	2.433(3)	As(3)-Al(3)	2.418(3)
$\mathrm{As}(2)-\mathrm{C}(43)$	1.971(7)	$\mathrm{Al}(3)-\mathrm{C}(49)$	1.990(8)
$\mathrm{C}(19)-\mathrm{As}(1)-\mathrm{Al}(1)$	104.3(2)	$\mathrm{C}(25)-\mathrm{Al}(2)-\mathrm{As}(1)$	123.9(2)
$\mathrm{C}(19)-\mathrm{As}(1)-\mathrm{Al}(2)$	108.7(2)	$\mathrm{C}(25)-\mathrm{Al}(2)-\mathrm{As}(2)$	119.9(2)
$\mathrm{Al}(1)-\mathrm{As}(1)-\mathrm{Al}(2)$	109.4(1)	$\mathrm{As}(1)-\mathrm{Al}(2)-\mathrm{As}(2)$	116.1(1)
$\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{As}(1)$	127.8(2)	$\mathrm{C}(67)-\mathrm{As}(3)-\mathrm{Al}(3)$	110.2(2)
$\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{As}(3)$	111.1(2)	$\mathrm{C}(67)-\mathrm{As}(3)-\mathrm{Al}(1)$	101.0(2)
$\mathrm{As}(1)-\mathrm{Al}(1)-\mathrm{As}(3)$	121.0(1)	$\mathrm{Al}(3)-\mathrm{As}(3)-\mathrm{Al}(1)$	104.5(1)
$\mathrm{C}(43)-\mathrm{As}(2)-\mathrm{Al}(3)$	108.4(2)	$\mathrm{C}(49)-\mathrm{Al}(3)-\mathrm{As}(3)$	121.1(2)
$\mathrm{C}(43)-\mathrm{As}(2)-\mathrm{Al}(2)$	104.4(2)	$\mathrm{C}(49)-\mathrm{Al}(3)-\mathrm{As}(2)$	135.4(2)
$\mathrm{Al}(3)-\mathrm{As}(2)-\mathrm{Al}(2)$	108.4(1)	$\mathrm{As}(3)-\mathrm{Al}(3)-\mathrm{As}(2)$	101.3(1)

reactions with these phosphines or arsines. In the case of $\mathrm{H}_{2} \mathrm{NPh}$ or $\mathrm{H}_{2} \mathrm{NDipp}$, however, the first products to be isolated were the bis(amido)alane compounds $\mathrm{Mes}^{*} \mathrm{Al}(\mathrm{NHPh})_{2}(\mathbf{1})$ or Mes*Al(NHDipp) $)_{2}(\mathbf{2})$, suggesting that $\mathbf{3}$ is produced in a stepwise manner through amido intermediates.

Structural Descriptions. (a) Mes*Al(NHPh) $\cdot \mathbf{E t}_{2} \mathrm{O}\left(1 \cdot \mathbf{E t}_{2} \mathrm{O}\right)$. The molecular structure of $\mathbf{1}$, which is illustrated in Figure 1, contains monomeric Mes* $\mathrm{Al}(\mathrm{NHPh})_{2}$ and one ether molecule in each of the asymmetric units. The closest interactions between the two molecules involve the nitrogen hydrogens and oxygen with the distances $\mathrm{H}(1)--\mathrm{O}(1)=2.29 \AA$ and $\mathrm{H}(2)--\mathrm{O}(1)=2.34 \AA(\mathrm{~N}(1)--\mathrm{O}(1)=3.188(5) \AA, \mathrm{N}(2)--$ $\mathrm{O}(1)=3.196(5) \AA$) being observed. The aluminum has a planar coordination that almost includes the phenyl groups at the nitrogens. The torsion angles between the perpendiculars to the coordination plane at aluminum and those at $\mathrm{N}(1)$ and $\mathrm{N}(2)$ are 14.7 and 18.0°. The $\mathrm{Al}-\mathrm{N}$ and $\mathrm{Al}-\mathrm{C}$ distances are 1.795(4) \AA (av) and $1.966(4) \AA$ and the $\mathrm{N}-\mathrm{Al}-\mathrm{N}$ angle is $107.9(2)^{\circ}$. There are also close approaches between the aluminum and

Figure 1. Thermal ellipsoid plot (30%) of $\mathbf{1} \cdot \mathrm{Et}_{2} \mathrm{O}$. H atoms (except $\mathrm{N}-\mathrm{H}$'s) are not shown for clarity.

Figure 2. Thermal ellipsoid plot (30\%) of 3. H atoms are not shown for clarity.
hydrogens from o-t-Bu groups that involve the atoms H8c (Al- $-\mathrm{H}=2.37 \AA$) and H18a (Al- $-\mathrm{H}=2.35 \AA$).
(b) (Mes*AlNPh) $\mathbf{2}_{2}$ (3). Molecules of $\mathbf{3}$ consist of centrosymmetric dimers that feature a central, almost perfectly square, $\mathrm{Al}_{2} \mathrm{~N}_{2}$ ring. The ipso carbon atoms of the Ph and Mes* substituents are coplanar with the $\mathrm{Al}_{2} \mathrm{~N}_{2}$ array. Thus, the coordination at the aluminum and nitrogen centers is distorted trigonal planar. The internal ring angles at $\mathrm{Al}(1)$ and $\mathrm{N}(1)$ are $88.75(9)^{\circ}$ and $91.25(9)^{\circ}$ with equivalent $\mathrm{Al}-\mathrm{N}$ distances of $1.824(2) \AA$. The $\mathrm{Al}-\mathrm{C}(1)$ distance is $1.962(2) \AA$ and the Al- - Al separation is $2.607(1) \AA$. The shortest Al- - H contacts, which involve the $\mathrm{C}(10)$ and $\mathrm{C}(18)$ methyl groups, are near $2.23 \AA$. The angle between perpendiculars to the $\mathrm{Al}_{2} \mathrm{~N}_{2}$ and Mes* planes is 86.8° while the corresponding angle involving the Ph plane is 13.2°.
(c) $\left(\text { Mes }^{*} \text { AlEPh }\right)_{3} \cdot \mathbf{E t}_{2} \mathrm{O}\left(\mathbf{E}=\mathbf{P}\left(4 \cdot \mathbf{E t}_{2} \mathrm{O}\right)\right.$, As $\left(5 \cdot \mathbf{E t}_{2} \mathrm{O}\right)$). The crystals of $\mathbf{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ and $5 \cdot \mathrm{Et}_{2} \mathrm{O}$ are isomorphous and are formed with a molecule of solvent ether in each asymmetric unit. There appears to be no significant interactions between the ether and the (Mes*AlEPh) 3_{3} species. The latter are composed of a six-membered ring of alternating aluminum and phosphorus or arsenic atoms arranged in a nonplanar boat conformation. The aluminums have planar coordination whereas the phosphorus and arsenic atoms are pyramidally coordinated. The average $\mathrm{Al}-\mathrm{P}$ and $\mathrm{Al}-\mathrm{As}$ distances are 2.328(3) and $2.430(5) \AA$ and the average sums of angles $\left(\Sigma^{\circ}\right)$ at phosphorus and arsenic are $329.1(3.0)$ and $319.7(3.0)^{\circ}$. In addition, there are relatively short Al- - H contacts with some of the $o-t-\mathrm{Bu}$ hydrogens as exemplified by $\mathrm{Al}(1)--\mathrm{H}(17 \mathrm{c})=2.21 \AA$, $\mathrm{Al}(2)--\mathrm{H}(2 \mathrm{~b})=2.06 \AA$, and $\mathrm{Al}(3)--\mathrm{H}(57 \mathrm{a})=1.95 \AA$ in 4 and $\mathrm{Al}(1)--\mathrm{H}(17 \mathrm{a})=2.15 \AA, \mathrm{Al}(2)--\mathrm{H}(32 \mathrm{~b})=2.14 \AA$, and $\mathrm{Al}(3)--\mathrm{H}(57 \mathrm{~d})=2.20 \AA$ in 5. The Mes*C(ipso)- - C (para) vectors subtend angles of as much as 15° with the corresponding $\mathrm{Al}-\mathrm{C}$ bonds. Furthermore, the rings are oriented almost perpendicularly to the coordination planes at the aluminums. Further structural details are provided in Table 3.

Figure 3. Thermal ellipsoid plot (30%) of $\mathbf{4} \cdot \mathrm{Et}_{2} \mathrm{O} . \mathrm{Et}_{2} \mathrm{O}$ and H atoms are not shown for clarity.

Figure 4. Thermal ellipsoid plot (30\%) of $\mathbf{5} \cdot \mathrm{Et}_{2} \mathrm{O}$. H atoms are not shown for clarity.

Discussion

The synthesis of the new ring compounds $\mathbf{3}, \mathbf{4}$, and $\mathbf{5}$ proceeds through the reaction of 1 equiv of Mes* AlH_{2} with $\mathrm{H}_{2} \mathrm{NPh}$, $\mathrm{H}_{2} \mathrm{PPh}$, or $\mathrm{H}_{2} \mathrm{AsPh}$ with concomitant elimination of dihydrogen. This route is a new one for unsaturated, quasiaromatic, main group III-V rings as the previous routes involved phosphine, ${ }^{5}$ methane, ${ }^{6}$ or salt eliminations. ${ }^{7}$ Hydrogen elimination reactions between phosphines, arsines, and alanes are quite rare and calculations have shown that the model species $\mathrm{H}_{3} \mathrm{AlPH}_{3}$, representing the initial step of the interaction between phosphines and alanes, is energetically less favored than dialane $\mathrm{H}_{2} \mathrm{Al}(\mu-\mathrm{H})_{2} \mathrm{AlH}_{2}$ and $\mathrm{PH}_{3} .{ }^{17}$ Reactions between AlH_{3} and amines, however, have been used to synthesize higher poly(imino)alanes of formula (HAlNR) $)_{n}(n \geq 4) .{ }^{18}$

The mechanism of the reaction that results in the isolation of the diamides $\mathbf{1}$ or $\mathbf{2}$ is not fully understood at present although the Mes* $\mathrm{AlH}_{2} / \mathrm{H}_{2} \mathrm{NPh}$ reaction system has been examined in

[^4]some detail. An initial product can be obtained by the addition of 1 equiv of aniline to a toluene solution of $\mathrm{Mes}^{*} \mathrm{AlH}_{2}$ at 0 ${ }^{\circ} \mathrm{C}$, followed by concentration and crystallization at $-20^{\circ} \mathrm{C}$. Alternatively, addition of 1 equiv of $\mathrm{H}_{2} \mathrm{NPh}$ to an $\mathrm{Et}_{2} \mathrm{O}$ solution of Mes* ${ }^{*} \mathrm{AlH}_{2}$ at $0{ }^{\circ} \mathrm{C}$ followed by evaporation of volatile materials under reduced pressure gives a spectroscopically similar product. Its IR spectrum shows two absorptions in the $v_{\mathrm{N}-\mathrm{H}}$ region (3365 (br) and $3300 \mathrm{~cm}^{-1}$ (sharp), relative intensity $=1: 1$) and two bands in the $v_{\mathrm{Al}-\mathrm{H}}$ region (1866 and $1836 \mathrm{~cm}^{-1}$, relative intensity $=1: 1.3$). No absorptions indicating $\mathrm{Al}-\mathrm{H}-$ Al bridges are observed in the range of $1400-1000 \mathrm{~cm}^{-1}$. Comparison with the IR spectra of $\mathbf{1}$ and $\left(\mathrm{Mes}^{*} \mathrm{AlH}_{2}\right)_{2}$ shows the presence of traces of $\mathbf{1}$ but no $\left(\mathrm{Mes}^{*} \mathrm{AlH}_{2}\right)_{2}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of the initial product at room temperature in the aromatic region shows the presence of $\mathbf{1}(c a$. $24 \%)$, Mes*H (ca. 8%), and a broad signal at $7.49 \mathrm{ppm}\left(\Delta v_{1 / 2}\right.$ $=15 \mathrm{~Hz} ; c a .68 \%)$. Heating of this sample to $85^{\circ} \mathrm{C}$ causes a slight broadening of the $m-\mathrm{H}$ signal of $\mathbf{1}$ and a more pronounced broadening of the $o-\mathrm{t}-\mathrm{Bu}$ and $p-\mathrm{t}-\mathrm{Bu}$ signals of $\mathbf{1}$ which appear to coalesce with the signals of the remaining " 68% fraction". A similar observation is made when a $1: 1$ mixture of $\mathrm{Mes}^{*} \mathrm{AlH}_{2}$ and $\mathbf{1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ is heated to $80^{\circ} \mathrm{C}$. This leads to the conclusion that an exchange of hydride and amide ligands occurs between these two species with $\mathbf{1}$ being either the most stable or the species that crystallizes first. This conclusion is supported by the isolation of $\left[\left\{2,6-\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{AlH}(\mu-\mathrm{NHPh})\right\}_{2}\right]^{19}$ and $[2,6-$ $\left.\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Al}(\mathrm{H})(\mu-\mathrm{NHPh})_{2}(\mathrm{NHPh}) \mathrm{AlC}_{6} \mathrm{H}_{3}-2,6-\mathrm{Mes}_{2}\right]^{19}$ from the reaction of $\left[2,6-\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{AlH}_{2}\right]_{2}$ with $\mathrm{H}_{2} \mathrm{NPh}(\mathrm{Al}: \mathrm{N}=1: 1)$ $\left(\right.$ Mes $\left.=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$. Further heating of the initial product to $c a .120-130{ }^{\circ} \mathrm{C}$ results in a melt which shows a smooth gas evolution for a few minutes and then solidifies to a colorless solid.

This solid proved to be insoluble in refluxing $\mathrm{Et}_{2} \mathrm{O}$, THF, or benzene. Only small amounts of $\mathbf{1}$ and Mes*H could be found in the supernatant liquid. The IR spectrum of this solid does not contain bands attributable to $\mathrm{N}-\mathrm{H}$ or $\mathrm{Al}-\mathrm{H}$ vibrations but shows the presence of the Mes* and $\mathrm{N}-\mathrm{Ph}$ groups. Thus, this solid is tentatively identified as (Mes*AlNPh) 2 . Heating of this solid to $200-210^{\circ} \mathrm{C}$ under reduced pressure causes it to partially melt and colorless crystals of Mes*H sublime. Crystals of (Mes*AlNPh) ${ }_{2}$ (3) were eventually obtained in $c a .40 \%$ yield by treatment of $\left(\mathrm{Mes}^{*} \mathrm{AlH}_{2}\right)_{2}$ with 2 equiv of $\mathrm{H}_{2} \mathrm{NPh}$ in hot (ca. $125^{\circ} \mathrm{C}$) ethylbenzene. The employment of the Mes* in the synthesis and stabilization of the $\mathrm{Al}_{2} \mathrm{~N}_{2}$ species may be contrasted with the reaction of Mes* NH_{2} and AlMe_{3} which affords the ortho-metallated species $\left(\mathrm{MeAlN}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{3}-2,4-(t-\right.$ $\overrightarrow{\left.\mathrm{Bu})_{2}-6-\mathrm{CMe}_{2} \mathrm{CH}_{2}\right)_{2} .{ }^{20} \text { As already mentioned the hydrogen }}$ elimination route to $\mathbf{3}$ proceeds under sufficiently mild conditions that the ortho-metallation and $\mathrm{C}-\mathrm{H}$ activation found with some alkane eliminations ${ }^{20 a, b}$ are not observed.

The bisamide compounds $\mathbf{1}$ and $\mathbf{2}$ are rare instances of unassociated aluminum bisamides. The only previously structurally characterized example for aluminum is $\operatorname{MesAl}\{\mathrm{N}-$ $\left.\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}{ }_{2}^{13}$ which has an average $\mathrm{Al}-\mathrm{N}$ distance of $1.807(3)$ \AA with rather large torsion angles ($c a .45-50^{\circ}$) between the aluminum and nitrogen planes. The average $\mathrm{Al}-\mathrm{N}$ distance in 1 is $1.795(4) \AA$ and the torsion angles, 14.7 and 18.0°, are much smaller. It could be argued that these parameters are evidence for $\mathrm{Al}-\mathrm{N} \pi$-bonding. However, it is probable that such differences are mainly a result of a change in the steric crowding

[^5]and the electronic properties of the amide ligands. The structure of $\mathbf{1}$ may also be compared with that of the recently reported gallium analogue $\mathrm{Mes}^{*} \mathrm{Ga}(\mathrm{NHPh})_{2}{ }^{13}$ which was synthesized in a different manner from 1 by the reaction of Mes* GaCl_{2} with 2 equiv of LiNHPh. In this compound the $\mathrm{Ga}-\mathrm{N}$ distance is $1.837(8) \AA$ with a torsion angle of 7.3° between the coordination planes at gallium and nitrogen. The longer metal-nitrogen distance in the case of the gallium species can be traced in part to the lower ionic character of the $\mathrm{Ga}-\mathrm{N}$ bond. However, it is also possible that the presence of hydrogen-bonded ether in the unit cell of $\mathbf{1}$ plays a role. The weak $\mathrm{O}-\mathrm{-}$ - H interaction in $\mathbf{1}$ may increase the electron density in the amido nitrogens thereby increasing the ionic component in the $\mathrm{Al}-\mathrm{N}$ bond which should result in a shorter bond length being observed.

The structure (Mes*AlNPh) $)_{2}$ (3) may be compared with the closely related molecules (MeAlNDipp) ${ }_{3}{ }^{6}$ and $\mathrm{Cp} *\left\{\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{~N}\right\}$ -$\operatorname{AlN}\left(\mu-\mathrm{AlCp}^{*}\right)\left(\mu-\mathrm{Al}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}\right) \mathrm{NAlCp}{ }_{2}{ }^{11}$ (6). The latter compound also features a planar $\mathrm{Al}_{2} \mathrm{~N}_{2}$ core which has an average $\mathrm{Al}-\mathrm{N}$ distance of $1.811(7) \AA$. However, the ring nitrogens are substituted by the three-coordinate aluminum moieties $\mathrm{Cp}^{*}\left\{\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{~N}\right\} \mathrm{Al}-$ or $\mathrm{Cp}^{*}{ }_{2} \mathrm{Al}-$, and one of the ring aluminums is substituted by an amido $\left(-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$ ligand. This makes possible $\mathrm{Al}-\mathrm{N} \pi$-interactions within the $\mathrm{Al}_{2} \mathrm{~N}_{2}$ ring in 6 more difficult to assess owing to roughly equally probable $\mathrm{Al}-\mathrm{N}$ π-interactions exo to the ring. In $\mathbf{3}$, however, all the ligands are aryl groups which display no evidence of π-interaction with the $\mathrm{Al}_{2} \mathrm{~N}_{2}$ core.

The $\mathrm{Al}-\mathrm{N}$ distance observed in 3, 1.824(2) \AA, is slightly longer than the $1.811(7) \AA$ observed in 6 . However, both values are well within the currently known range (1.78(2)-1.879(4) $\AA)^{13}$ for compounds that involve bonding between threecoordinate nitrogen and aluminum. It is also significantly longer than the $\mathrm{Al}-\mathrm{N}$ distance of $1.782(4) \AA$ observed in the quasiaromatic trimer (MeAlNDipp) $3_{3}{ }^{6}$ The shorter $\mathrm{Al}-\mathrm{N}$ bond lengths observed in (MeAlNDipp) $)_{3}$ tended to suggest greater delocalization and $\mathrm{Al}-\mathrm{N} \pi$-bonding in the $\mathrm{Al}_{3} \mathrm{~N}_{3}$ array. Furthermore, the longer $\mathrm{Al}-\mathrm{N}$ bonds in $\mathbf{3}$ are consistent with antiaromatic character for the $\mathrm{Al}_{2} \mathrm{~N}_{2}$ array. ${ }^{8,9}$ Calculations have shown, however, that the amount of delocalization in the sixmembered $\mathrm{Al}_{3} \mathrm{~N}_{3}$ ring is minimal and that any differences between the two structures are more than likely due to steric factors or to changes in σ-hybridization. With regard to the latter, it is notable that in $\mathbf{3}$ the $\mathrm{Al}-\mathrm{N}$ bonds are approximately at right angles to each other indicating that the $\mathrm{Al}-\mathrm{N}$ bonds have almost pure p-character while the $\mathrm{Al}-\mathrm{C}\left(\mathrm{Mes}^{*}\right)$ bond has increased s-character. In (MeAlNDipp) $)_{3}$ the aluminum has approximately trigonal planar coordination with interligand angles at aluminum all within 5° of 120°. Thus, $\mathrm{Al}-\mathrm{N}$ σ-bonding in (MeAlNDipp) $)_{3}$ involves approximate sp^{2} hybridization at aluminum whereas in $\mathbf{3}$ the aluminum orbitals used in σ-bonding have almost pure p-character. This suggests that the $\mathrm{Al}-\mathrm{N}$ bonds in $\mathbf{3}$ should be longer than those in (MeAlNDipp) $)_{3}$ which is what is observed. It is also notable that the $\mathrm{Al}-\mathrm{C}$ bond length in $3,1.962(2) \AA$, is nominally shorter than the $1.978(15) \AA \mathrm{Al}-\mathrm{C}$ distance in (MeAlNDipp) $)_{3}$. This is in spite of the large size of the Mes* substituent and is consistent with increased s-character for the $\mathrm{Al}-\mathrm{C}$ bond in 3 . An interesting aspect of the structure of $\mathbf{3}$ is that the $\mathrm{Al}--\mathrm{Al}$ separation across the $\mathrm{Al}_{2} \mathrm{~N}_{2}$ ring is just 2.6074(14) \AA. This distance is significantly shorter than the $\mathrm{Al}-\mathrm{Al}$ single bond length in $\mathrm{R}_{2} \mathrm{Al}-\mathrm{AlR}_{2}\left(\mathrm{R}=-\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}(2.660(1) \AA),{ }^{21}\right.$ $\left.-\mathrm{C}_{6} \mathrm{H}_{2}-2,4,6-(i-\operatorname{Pr})_{3}(2.647(3) \AA)^{22}\right)$ compounds and other $\mathrm{Al}-$

[^6]Al species ${ }^{23}$ but it does not necessarily indicate the presence of any significant $\mathrm{Al}-\mathrm{Al}$ bonding. Finally, it should be mentioned that the planar geometry of the nitrogens in $\mathbf{3}$ or (MeAlNDipp) $)_{3}$ can be accounted for in terms of the low or zero inversion barrier at nitrogen caused by the electropositive Al substituents. ${ }^{24}$

The compounds $\mathbf{4}$ and $\mathbf{5}$ crystallize as trimers from ether solution with one non-interactive $\mathrm{Et}_{2} \mathrm{O}$ molecule included in each asymmetric unit. The higher aggregation in $\mathbf{4}$ and 5 compared to $\mathbf{3}$ is presumably due to the relaxed steric requirements as a consequence of the larger size of P or As in comparison to N . The central, isostructural, six-membered rings are composed of alternating Al and P or As atoms. The phosphorus and arsenic centers are quite pyramidal with average sums of angles at P and As of $329.1(3.0)^{\circ}$ and $319.7(3.0)^{\circ}$. The average $\mathrm{Al}-\mathrm{P}$ distance, $2.328(3) \AA$, is very close to that $(2.342(2) \AA)$ observed in $\left(2,4,6-(i-\operatorname{Pr})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{AlP}\left(1\right.$-adamantanyl) $\mathrm{SiPh}_{3}\left(\Sigma^{\circ} \mathrm{P}=330.0^{\circ}\right)$ which is the only previously known structure of a molecule with bonding between three-coordinate Al and $\mathrm{P} .{ }^{12}$ In this molecule there is thought to be essentially no $\mathrm{Al}-\mathrm{P} \pi$-interaction.

Although there are no molecular structures with bonding between three-coordinate Al and As the average $\mathrm{Al}-\mathrm{As}$ bond length, $2.430(5) \AA$, is consistent with single bonding, being almost identical to the sum of the covalent radii of Al and As when corrected for ionic effects. ${ }^{25}$ This, together with the observation of pyramidal geometry at each arsenic, is consistent with negligible π-delocalization in the $\mathrm{Al}_{3} \mathrm{As}_{3}$ array. The major reasons for the lack of delocalization in either $\mathbf{4}$ or 5 are the high inversion barriers ${ }^{24}$ at P or As and the relatively large sizes of Al, P, or As which diminish side-on $\mathrm{p}-\mathrm{p} \pi$-overlap. This view of the structures is in harmony with recent calculations ${ }^{9}$ which indicated essentially no π-delocalization and which favored a chair over a boat configuration in such molecules by $3.3-6.8 \mathrm{kcal} \mathrm{mol}^{-1}$.

The $\mathrm{Al}-$ As distance in 5 is $c a .0 .1 \AA$ shorter than the average lengths of 2.535 and $2.567 \AA$ found in the dimers $\left\{\mathrm{Et}_{2} \mathrm{AlAs}(t\right.$ $\left.\mathrm{Bu})_{2}\right\}_{2}{ }^{26}$ and $\left\{\mathrm{Et}_{2} \mathrm{AlAs}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2} .{ }^{27}$ The longer distances in the latter species are presumably a consequence of the fourcoordinate nature of the Al and As centers. However, an $\mathrm{Al}-$ As distance of $2.463(2) \AA$ has been reported for the adduct $\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3} \mathrm{AsAlCl}_{3}{ }^{28}$ and this may be a result of the enhanced Lewis acidity for the aluminum center owing to halide substitution. The average Al -As length in $\mathbf{5}$ may also be contrasted with the value of 2.342(5) Å found for the terminal Al-As bond in the Zintl species $\left[\mathrm{Al}_{2} \mathrm{As}_{4}\right]^{6-}$ which is thought to involve significant Al -As multiple bonding. ${ }^{29}$

The ${ }^{31} \mathrm{P}$ NMR spectrum of 4 displays a single resonance at -144.2 ppm . The relatively high upfield value is consistent with the fact that two of the substituents at phosphorus are electropositive aluminum centered groups. The shift is similar to that observed for $\left(2,4,6-(i-\operatorname{Pr})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{AlPMes}\left(\mathrm{SiPh}_{3}\right)(-157.1$ $\mathrm{ppm})^{12}$ or $\mathrm{PhP}\left(\mathrm{SiMe}_{3}\right)_{2}(-132.8 \mathrm{ppm}){ }^{30}$ The high value of the shift of $\mathbf{4}$ signifies considerable electron density at phosphorus
(23) Uhl, W. Angew. Chem. Int., Ed. Engl. 1993, 32, 1386.
(24) Lambert, J. B. In Topics in Stereochemistry; Allinger, N. L., Eliel, E. L., Eds.; Wiley; New York, 1971; Vol. 6, p 19.
(25) Schomaker, W.; Stevenson, D. P. J. Am. Chem. Soc. 1941, 63, 37. Covalent radii of $1.3 \AA$ for Al and $1.21 \AA$ for As were used as well as Allred-Rochow electronegativities.
(26) Heaton, D. E.; Jones, R. A.; Kidd, K. B.; Cowley, A. H.; Nunn, C. M. Polyhedron 1988, 7, 1901.
(27) Wells, R. L.; McPhail, A. T.; Speer, T. M. Organometallics 1992, 11, 960.
(28) Wells, R. L.; Pitt, C. G.; McPhail, A. T.; Purdy, A. P.; Shafieezad, R. B.; Hallock, R. B. Mater. Res. Soc. Sym. Proc. 1989, 131, 45.
(29) Somer, M.; Thiery, D.; Peters, K.; Walz, L.; Hartweg, M.; Popp, T.; von Schnering, H. G. Z. Naturforsch. 1991, 46b, 789.
(30) Appel, R.; Geisler, K. J. Organomet. Chem. 1976, 112, 61.
and is consistent with the absence of delocalization in the $\mathrm{Al}_{3} \mathrm{P}_{3}$ ring.

Conclusion

Use of the sterically encumbered alane $\left(\mathrm{Mes}^{*} \mathrm{AlH}_{2}\right)_{2}$ allows the ready isolation of previously unknown dimeric aluminum imide and trimeric phosphinidine and arsinidine derivatives. The reactions proceed at temperatures that are lower than alkane eliminations involving comparably crowded group III-V precursors. The absence of a significant tendency to activate substituent $\mathrm{C}-\mathrm{H}$ bonds in the presence of low-coordinate aluminum at H_{2} elimination temperatures suggests that this method may be used to generate other interesting main group III-V compounds.

Acknowledgment. We thank the National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for financial support.

Supporting Information Available: Tables giving full data collection parameters and further details of refinement, atomic coordinates and equivalent isotropic thermal parameters, bond distances and angles, hydrogen coordinates, and anisotropic thermal parameters (45 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA952021C

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, January 15, 1996.
 (1) Wehmschulte, R. J.; Power, P. P. Inorg. Chem. 1994, 33, 5611.
 (2) Cowley, A. H.; Gabbai, F.; Isom, H. S.; Carrano, C. J.; Bond, M. R. Angew. Chem., Int. Ed. Engl. 1994, 33, 1253.
 (3) Power, P. P. J. Organomet. Chem. 1990, 400, 49.
 (4) Stock, A.; Pohland, E. Dtsch. Chem. Ges. 1926, 59, 2215.
 (5) Dias, H. V. R.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1987, 26, 1270.
 (6) Waggoner, K. M.; Hope, H.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1988, 27, 1699

[^1]: (7) Hope, H.; Pestana, D. C.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1991, 30, 691 .
 (8) Fink, W. H.; Richards, J. C. J. Am. Chem. Soc. 1991, 113, 3385.
 (9) Matsuanga, N.; Gordon, M. S. J. Am. Chem. Soc. 1994, 116, 11407.
 (10) Atwood, D. A.; Cowley, A. H.; Jones, R. A.; Mardones, M. A. J. Am. Chem. Soc. 1991, 113, 7050.
 (11) Schultz, S.; Häming, L.; Herbst-Irmer, R.; Roesky, H. W.; Sheldrick, G. Angew. Chem., Int. Ed. Engl. 1994, 33, 969.

[^2]: (12) Wehmschulte, R.; Ruhlandt-Senge, K.; Power, P. P. Inorg. Chem. 1994, 33, 3205.
 (13) Brothers, P. J.; Wehmschulte, R. J.; Olmstead, M. M.; RuhlandtSenge, K.; Parkin, S. R.; Power, P. P. Organometallics 1994, 13, 2792 and references therein.
 (14) Horvat, R. J.; Furst, A. J. Am. Chem. Soc. 1952, 74, 562.
 (15) Palmer, C. S.; Adams, R. J. Am. Chem. Soc. 1922, 44, 1356.

[^3]: (16) This method is described by: Hope, H. A Practicum in Synthesis and Characterization. In Experimental Organometallic Chemistry; Wayda, A. L., Darensbourg, M. Y., Eds.; ACS Symposium Series 375; American Chemical Society: Washington, DC, 1987; Chapter 10.

[^4]: (17) Bennett, F. R.; Elms, F. M.; Gardiner, M. G.; Koutsantonis, G. A.; Raston, C. L.; Roberts, N. K. Organometallics 1992, 11, 1457.
 (18) Cucinella, S.; Salvatori, T.; Busetto, C.; Mazzei, A. J. Organomet. Chem. 1974, 78, 185.

[^5]: (19) Wehmschulte, R. J.; Power, P. P. Unpublished results. Spectroscopic and structural details of these two species will be provided upon request.
 (20) (a) Hitchcock, P. B.; Jasim, H. A.; Lappert, M. F.; Williams, H. D. Polyhedron 1990, 9, 245; (b) Waggoner, K. M.; Olmstead, M. M.; Power, P. P. Polyhedron 1990, 9, 257.

[^6]: (21) Uhl, W. Z. Naturforsch. 1988, 43b, 1113.
 (22) Wehmschulte, R. J.; Ruhlandt-Senge, K.; Olmstead, M. M.; Hope, H.; Sturgeon, B. E.; Power, P. P. Inorg. Chem. 1993, 32, 2983.

